- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Yang, Tonghai (3)
-
Yin, Hongbo (3)
-
Yu, Peng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yang, Tonghai; Yin, Hongbo (, manuscripta mathematica)
-
Yang, Tonghai; Yin, Hongbo; Yu, Peng (, International Mathematics Research Notices)Abstract In this paper, we show that $$\lambda (z_1) -\lambda (z_2)$$, $$\lambda (z_1)$$, and $$1-\lambda (z_1)$$ are all Borcherds products on $$X(2) \times X(2)$$. We then use the big CM value formula of Bruinier, Kudla, and Yang to give explicit factorization formulas for the norms of $$\lambda (\frac{d+\sqrt d}2)$$, $$1-\lambda (\frac{d+\sqrt d}2)$$, and $$\lambda (\frac{d_1+\sqrt{d_1}}2) -\lambda (\frac{d_2+\sqrt{d_2}}2)$$, with the latter under the condition $$(d_1, d_2)=1$$. Finally, we use these results to show that $$\lambda (\frac{d+\sqrt d}2)$$ is always an algebraic integer and can be easily used to construct units in the ray class field of $${\mathbb{Q}}(\sqrt{d})$$ of modulus $$2$$. In the process, we also give explicit formulas for a whole family of local Whittaker functions, which are of independent interest.more » « less
An official website of the United States government
